Thermally-Excited Nonequilibrium States Between Electrons and Phonons for Energy Conversion

Gang Chen
X.Y. Chen, Z. Chen, L. Hu, A. Narayanaswamy, R.G. Yang

Mechanical Engineering Department
Massachusetts Institute of Technology
Cambridge, MA 02139
http://nanoengineering.mit.edu
Phonon Transport

Superlattices

Nanocomposites

Boltzmann Eq. Approach

Monte Carlo Simulation

Molecular Dynamics

NanoEngineering Group
Thermoelectric Materials

ONR MURI (K.L. Wang, Dresselhaus)

NASA (Z.F. Ren/J.-P. Fleurial/M.S. Dresselhaus)

NanoEngineering Group
Motivation

- It is relatively easy to electrically drive electron and phonon out of equilibrium: hot and cold electrons.
- Can we drive electrons and phonons out of equilibrium by a temperature difference?

Cold Electrons in Thermoelectrics

Hot Electrons in MOSFET
Potential-Step Amplified Thermal Electric Energy Converter (PANTEC)

Region 1 Region 2

Potential Interface

Forward Structure

Reverse Structure

G. Chen
J. Appl. Phys.
083707 (1-8)
2005

NanoEngineering Group

Sharp Interface:
1. Electron Mean Free Path > Space Charge Region
2. Single Carrier Transport
Interface Transport

- Charge Balance
- Energy Balance

- Interface Seebeck Effect

\[S_i \approx \frac{E_{f1} - E_{f2}}{e(T_{e1} - T_{e2})} = -\frac{\kappa_B}{e} \left(2 + \frac{E_{c1} - E_{f2}}{\kappa_B T_{e1}} \right) \]

Interface Seebeck Voltage = \(S_i (T_{e1} - T_{e2}) \)

Mahan et al., JAP (1998)
Amplification of Temperature Discontinuity

\[(T_{e1} - T_{e2})_f \propto -\frac{k_{e2}}{J_{R,f}} \frac{dT_{e2}}{dx} \]

Amplification Factor

\[(T_{e1} - T_{e2})_f \sim e^{\Delta / (\kappa_B T_e)} \Lambda e_2 \frac{dT_{e2}}{dx} \]

No Amplification

\[(T_{e1} - T_{e2})_r \propto -\frac{k_{e2}}{J_{R,r}} \frac{dT_{e2}}{dx} \]

\[(T_{e1} - T_{e2})_f \sim \Lambda e_2 \frac{dT_{e2}}{dx} \]
Two-Temperature Modeling Results

\[\Delta \frac{1}{k_B T} = 8.3 \]

\[\mu = 20,000 \text{ cm}^2/\text{Vs}; \quad m^* = 0.014 m_e; \quad G = 10^{10} \text{ W/m}^3\text{K} \]

\[k_p = 1 \text{ W/mK}; \quad n_2 = 3.18 \times 10^{17} \text{ cm}^{-3}; \quad n_1 = 5.8 \times 10^{16} \text{ cm}^{-3} \]
Open Circuit Voltage

- Forward Structure
- Pure Thermoelectric
- Reverse Structure

$n_2 = 1.3 \times 10^{18} \text{ cm}^{-3}$
$G_2 = 10^{11} \text{ W/m}^3\text{K}$
$\mu = 7700 \text{ V cm/s}$
$d_1 = 0.1 \text{ \mu m}$
$d_2 = 5 \text{ \mu m}$
$K_p = 1 \text{ W/mK}$
PANTEC Refrigerator

COLD SIDE TEMPERATURE (K) vs. CURRENT DENSITY (Am⁻²)

- Bulk
- Dots Reverse Structure

- $n_2 = 3.18 \times 10^{17}$ cm⁻³
- $\mu = 20000$ cm²/Vs
- $K_p = 1$ W/mK
- $d_1 = 1000$ Å
- $d_2 = 5$ μm
Surface-Plasmon Coupled Nonequilibrium Thermoelectric Energy Conversion

Nonequilibrium Thermoelectric Devices

- Explore nonequilibrium between electrons and phonons
- Couple the cooling target with thermoelectric element without direct lattice contact

\[ZT = \frac{\sigma S^2 T}{k_e + \kappa_p} \]

Surface Plasmon Coupling of Electrons

Model Based on Fluctuation-Dissipation Theorem

Three orders of magnitude increase in energy transfer flux due to surface plasmon resonance

Macroscopic gap

Nanoscale gap

Far-Field

Surface Waves
Two Temperature Model

Electrons
\[
\frac{d}{dx} \left(k_e \frac{dT_e}{dx} \right) - G \left(T_e - T_p \right) + \frac{J_p^2}{\sigma} = 0
\]

Phonons
\[
\frac{d}{dx} \left(k_p \frac{dT_p}{dx} \right) + G \left(T_e - T_p \right) = 0
\]

Electron-Phonon Coupling Factor

Coupling Boundary
\[
q_{Load} = q_{sp} \left(T_1, T_e \bigg|_{x=0} \right) = SjT_e \bigg|_{x=0} - k_e \frac{dT_e}{dx} \bigg|_{x=0}
\]
\[
\frac{dT_p}{dx} = 0
\]
Power Generation Mode

Heat Source T_1 → Vacuum Gap → Power Generation T_p → Load T_2

- $T_1 = 500$ K
- $G = 10^9$ W/(m3 K)
- $G = 10^{10}$ W/(m3 K)
- $G = 10^{12}$ W/(m3 K)
Refrigeration Mode

Cooling Load $q = 50 \text{ W/cm}^2$

- $G = 10^8 \text{ W/(m}^3\text{K)}$
- $G = 10^{10} \text{ W/(m}^3\text{K)}$
- $G = 10^{12} \text{ W/(m}^3\text{K)}$

- Conventional

Caption:

- $k_e/k = 0.1$
- $Z = 0.002 \text{K}^{-1}$
- $T_H = 300 \text{K}$

Graphs showing:
- Cold End Temperature vs. ThermoElectric Element Length
- COP vs. ThermoElectric Element Length

NanOE Engineering Group
Surface Wave Experiments

- Extraordinary transmission
- Near field radiation transfer between parallel plates
- Near field radiation transfer between sphere and plate
Phonon-Polariton Extraordinary Transmission

4 \mu m Period 2 \mu m Holes

\[T_{\text{with holes}} / T_{\text{without holes}} \]

Wavelength \(\lambda \) (\mu m)

Experimental Data
MEEP Calculation

with Soljacic and Joannopoulos
AFM-Based Near-Field Experiment

- AFM measures deflection of cantilever with sub-Å accuracy
- Deflection is generally due to forces between tip and sample
- With a bimetallic cantilever, thermal changes also cause deflections
Initial Experimental Results

- Conductance (W/K^-1) vs. Gap (nm)
- Experimental data
- Near-field theory (two sphere)
- Classical radiative transfer

Graph showing conductance values in the range of 10^{-10} to 10^{-8} and gap in nanometers from 10^2 to 10^5.辅信号 (V) range from -0.3 to -0.8.
How Large is G?

\[G = \frac{12\sqrt{2}}{\pi^{3/2}} \frac{nm^{5/2} Z_A^2}{\rho \hbar^4 T_e} \left[\kappa_B T_e \right]^{3/2} \sim 10^{-12} n \left(\frac{m}{m_o} \right)^{5/2} \]

For \(\rho = 5000 \text{ kg/m}^3, Z_A = 4 \text{ eV}, T_e = 300 \text{ K} \)

\[G \sim n \frac{\kappa_B T}{\tau} \frac{m}{M} = n \frac{e\kappa_B T}{\mu M} \sim 0.4 \times 10^{-12} n \]

For \(\mu = 10000 \text{ cm}^2/\text{Vs}, M \sim 2000 \text{ m} \)
Hot carrier cooling in III-V

LO phonon generation and decay limit thermalization

\[Q \sim n_e \cdot E_p / \tau_{eff} \]
\[1/Q = 1/Q_{gen} + 1/Q_{decay} \]
\[Q_{gen} \sim n_e \cdot E_p / \tau_{LO} \]
\[Q_{decay} \sim n_p \cdot E_p / \tau_{LA} \]

Carriers at 600K:
- Bulk: \(Q_{decay} \sim 10^{16} \text{ W/m}^3 \)
- MQW: \(Q_{decay} \sim 10^{14} \text{ W/m}^3 \)

From J.F. Guillemoles
Thank you!

Questions?